

\$ sciendo Vol. 28(3),2020, 5–14

On the metric dimension of a total graph of non-zero annihilating ideals

Nazi Abachi and Shervin Sahebi

Abstract

Let R be a commutative ring with identity which is not an integral domain. An ideal I of a ring R is called an annihilating ideal if there exists $r \in R - \{0\}$ such that Ir = (0). Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by $\Omega(R)$ as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R and two distinct vertices I, J are joined if and only if I+J is also an annihilating ideal of R. In this paper, we study the metric dimension of $\Omega(R)$ and provide metric dimension formulas for $\Omega(R)$.

1 Introduction

Assigning a metric dimension to a graph was first introduced by Harary and Melter in [10]. Later, this concept was applied to graphs associated to commutative rings. (see, for example [7, 8, 9]). In this paper, we study the metric dimension of a total graph of non-zero annihilating ideals.

Throughout this paper, all rings are assumed to be commutative with identity and they are not fields. The sets of all zero-divisors, nilpotent elements, minimal prime ideals, maximal ideals and Jacobson radical of R are denoted by Z(R), Nil(R), Min(R), Max(R) and J(R), respectively. For a subset T of a ring R we let $T^* = T - \{0\}$. An ideal with non-zero annihilator is called an

Key Words: metric dimension, Zero-divisor, Annihilating ideal, Resolving set. 2010 Mathematics Subject Classification: Primary 13A15, 13B99; Secondary 05C99,

⁰⁵C25. Received: 16.09.2019

Accepted: 09.01.2020.

annihilating ideal. The set of annihilating ideals of R is denoted by $\mathbb{A}(R)$. For every subset I of R, we denote the annihilator of I by ann(I). Some more definitions about commutative rings can be find in [4, 5].

We use the standard terminology of graphs following [15]. By G = (V, E), we mean a graph, where V and E are the set of vertices and edges, respectively. If we can find at least one path between two any vertices of G, then G is called *connected*. Also, the length of the shortest path between two distinct vertices x and y is denoted by d(x, y) (note that $d(x, y) = \infty$, if there is not any path between x and y) and diam $(G) = max\{d(x, y) | x, y \in V\}$ is called the *diameter* of G.

The girth of a graph G, denoted by girth(G), is the length of the shortest cycle in G. The graph $H = (V_0, E_0)$ is a subgraph of G if $V_0 \subseteq V$ and $E_0 \subseteq E$. Moreover, H is called an *induced* subgraph by V_0 , denoted by $G[V_0]$, if $V_0 \subseteq V$ and $E_0 = \{\{u, v\} \in E \mid u, v \in V_0\}$. Let $x \in V$, then $N(x) = \{y \in V \mid \{x, y\} \in E\}$ and $N[x] = N(x) \cup \{x\}$.

Let G = (V, E) be a connected graph, $S = \{v_1, v_2, \ldots, v_k\}$ be an ordered subset of V and $v \in V(G) \setminus S$. The metric representation of v with respect to S is the k-vector $D(v|S) = (d(v, v_1), d(v, v_2), \ldots, d(v, v_k))$. For $S \subseteq V$, if for every $v, u \in V(G) - S$, D(u|S) = D(v|S) implies that u = v, then S is called the resolving set for G. The metric basis for G is a resolving set S of minimum cardinality and the number of elements in S is called the metric dimension of G $(dim_M(G))$.

For a graph G with $|V(G)| \ge 2$, if for all $x \in V(G) - \{u, v\}$, d(u, x) = d(v, x)(u, v are two distinct vertices), then u, v are distance similar. Clearly, if either $u - v \notin E(G)$ and N(u) = N(v) or $u - v \in E(G)$ and N[u] = N[v], then two distinct vertices u and v are distance similar.

An k-partite graph is one whose vertex set can be partitioned into k subsets so that an edge has both ends in no subset. A complete k-partite graph is an k-partite graph in which each vertex is adjacent to every vertex that is not in the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by $K^{m,n}$. If m = 1, then the bipartite graph is called star graph. A complete graph is a graph such that there exist an edge detween each pair of vertices and is denoted by K^n .

Let R be a commutative ring with identity which is not an integral domain. An ideal I of a ring R is called an annihilating ideal if there exists $r \in R - \{0\}$ such that Ir = (0). Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by $\Omega(R)$ as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R and two distinct vertices I, J are joined if and only if I + J is also an annihilating ideal of R. In this paper, we study the metric dimension of $\Omega(R)$ and provide metric dimension formulas for $\Omega(R)$.

2 Metric dimension of a total graph of a reduced ring

Let R be a commutative ring. In this section, we provide a metric dimension formula for a total graph of non-zero annihilating ideals when R is reduced.

Lemma 2.1. Suppose that R is a commutative ring with identity and $\Omega(R)$ is connected. If R is not an integral domain, then the following statements are equivalent.

(1) $\dim_M(\Omega(R))$ is finite.

(2) R has only finitely many ideals.

Proof. (1) \Rightarrow (2) Assume that $dim_M(\Omega(R))$ is finite and for some non-negative integer n, let $W = \{I_1, I_2, \ldots, I_n\}$ be the metric basis for $\Omega(R)$. Since $diam(\Omega(R)) \leq 2$ (see [14]), for every $I \in A(R)^* - W$, there are only $(2+1)^n$ choices for D(I|W). So $|A(R)^*| \leq 3^n + n$ and hence R has only finitely many ideals.

 $(2) \Rightarrow (1)$ is clear.

If R is a reduced ring with finitely many ideals, then R is Artinian ring and so by [4, Theorem 8.7], R is direct product of finitely many fields. Using this, we prove the following result.

Theorem 2.1. Suppose that R is a reduced ring with identity that is not an integral domain. If $\Omega(R)$ is connected and $\dim_M(\Omega(R))$ is finite, then:

(1) If |Max(R)| = 3, then $dim_M(\Omega(R)) = 2$.

(2) If $|Max(R)| = n \ge 4$, then $dim_M(\Omega(R)) = n$.

Proof. (1) If n = 3, then $R \cong F_1 \times F_2 \times F_3$, where F_i is a field for every $1 \le i \le 3$. Now, we put $W = \{(0) \times F_2 \times F_3, F_1 \times (0) \times F_3\}$ and by Figure 1, we can easily get

 $\begin{array}{l} D((0) \times F_2 \times (0) | W) = (1,2), \\ D(F_1 \times (0) \times (0) | W) = (2,1), \\ D((0) \times (0) \times F_3 | W) = (1,1), \\ D(F_1 \times F_2 \times (0) | W) = (2,2). \\ \text{So for every } x, y \in V(\Omega(R)) - W, \ D(x|W) \neq D(y|W) \text{ and hence} \\ \dim_M(\Omega(R)) = 2. \end{array}$

Figure 1: $\Omega(F_1 \times F_2 \times F_3)$

(2) Assume that $n \ge 4$. By Lemma 2.1, $R \cong F_1 \times \cdots \times F_n$, where F_i is a field for every $1 \le i \le n$. We show that $\dim_M(\Omega(R)) = n$. Indeed, we have the following claims:

Claim 1. $dim_M(\Omega(R)) \ge n$.

Since R is direct product of finitely many fields, by Lemma 2.1, $dim_M(\Omega(R))$ is finite. So we can let for some integer $k, W = \{I_1, I_2, \ldots, I_k\}$ be the metric basis for $\Omega(R)$. On the other hand, since, $diam(\Omega(R)) \in \{1, 2\}$ (see [14]), for every $I \in A(R)^* - W$, there are only 2^k possibilities for D(I|W). This implies that $|A(R)^*| - k \leq 2^k$. Since $|A(R)^*| = 2^n - 2$, $2^n - 2 - k \leq 2^k$ and hence $2^n \leq 2^k + 2 + k$. Since $n \geq 4$, we have $k \geq n$. Therefore, $dim_M(\Omega(R)) \geq n$.

Claim 2. $dim_M(\Omega(R)) \leq n$.

For every $1 \leq i \leq n$, let $(I_1, I_2, \ldots, I_n) = \mathfrak{m}_i \in A(R)^*$ such that $I_i = 0$ and $I_j = F_j$, for every $1 \leq j \leq n$ with $i \neq j$. We put $W = \{\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n\}$ (in fact W = Max(R)). We show that W is the resolving set for $\Omega(R)$. For this, let $I, J \in V(\Omega(R)) - W$ and $I \neq J$. We need only to show that $D(I|W) \neq D(J|W)$. Let $I = (I_1, I_2, \ldots, I_n)$ and $J = (J_1, J_2, \ldots, J_n)$. Since $I \neq J$, for some $1 \leq i \leq n$, $I_i = 0$ and $J_i = F_i$ or $I_i = F_i$ and $J_i = 0$. Without loss of generality, we can assume that $I_1 = 0$ and $J_1 = F_1$. Now, it is easy to see that $d(I, \mathfrak{m}_1) = 1$ and $d(J, \mathfrak{m}_1) = 2$. This clearly shows that $D(I|W) \neq D(J|W)$. Therefore $dim_M(\Omega(R)) \leq n$.

Now, by Claim 1, 2 we have $dim_M(\Omega(R)) = n$, for $n \ge 4$.

3 Metric dimension of a total graph of a non-reduced ring

In this section, we study the metric dimension of $\Omega(R)$ when R is non-reduced. We begin with the following useful lemma.

Lemma 3.1. Let $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring for every $1 \le i \le n$. and let $I = (I_1, \ldots, I_n)$ and $J = (J_1, \ldots, J_n)$. Then

(1) I - J is an edge of $\Omega(R)$ if and only if for some $1 \le i \le n$, $I_i, J_i \subseteq Nil(R_i)$.

(2) If $0 \neq I \subseteq J(R)$, then I is adjacent to all other vertices in $\Omega(R)$.

Proof. (1) Let I - J be an edge of $\Omega(R)$. If for every $1 \le i \le n$, $I_i \nsubseteq \text{Nil}(R_i)$ or $J_i \nsubseteq \text{Nil}(R_i)$, then for every $1 \le i \le n$, $I_i = R_i$ or $J_i = R_i$. This implies that I + J = R and hence I - J is not an edge of $\Omega(R)$, a contradiction. The converse is clear.

(2) By Part (1) is clear.

Remark 3.1. For a connected graph G, if V_1, V_2, \ldots, V_k is a partition of V(G) such that for every $1 \leq i \leq k$, $x, y \in V_i$ implies that N(x) = N(y). Then $\dim_M(G) \geq |V(G)| - k$.

Theorem 3.1. Suppose that $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring such that for every $1 \le i \le n$, $|A(R_i)^*| \ge 1$. Then $\dim_M(\Omega(R)) = |A(R)^*| - 2^n + 1$.

Proof. Suppose that $I = (I_1, \ldots, I_n)$ and $J = (J_1, \ldots, J_n)$ are vertices of $\Omega(R)$. Define the relation ~ on $V(\Omega(R))$ as follows: $I \sim J$, whenever for each $1 \leq i \leq n$, " $I_i \subseteq Nil(R_i)$ if and only if $J_i \subseteq Nil(R_i)$ ".

Clearly, \sim is an equivalence relation on $V(\Omega(R))$. The equivalence class of I is denoted by [I]. Suppose that X and Y are two elements of the equivalence class of I. Since $X \sim Y$, by part (1) of Lemma 3.1, we can easily get N(X) = N(Y). Now, since the number of equivalence classes is $2^n - 1$, then

$$dim_M(\Omega(R)) \ge |A(R)^*| - (2^n - 1) = |A(R)^*| - 2^n + 1,$$

by Remark 3.1.

Now, we show that

$$dim_M(\Omega(R)) \le |Z(R)^*| - 2^n + 1.$$

We put

 $A = \{ (I_1, \dots, I_n) \in V(\Omega(R)) \mid I_i \in \{0, R_1, \dots, R_n\} \text{ for every } 1 \le i \le n \} \cup \{ (Nil(R_1), \dots, Nil(R_n)) \}$

 $W = A(R)^* - A.$

We show that W is a resolving set and consequently the metric basis for the graph $\Omega(R)$. For this, let $I, J \in A$ and $I \neq J$. Let $I = (I_1, \ldots, I_n)$ and $J = (J_1, \ldots, J_n)$. We show that $D(I|W) \neq D(J|W)$.

We have the following cases:

Case 1. $I = (Nil(R_1), \ldots, Nil(R_n))$ or $J = (Nil(R_1), \ldots, Nil(R_n))$. Without loss of generality, we may assume that $I \neq (Nil(R_1), \ldots, Nil(R_n))$ and $J = (Nil(R_1), \ldots, Nil(R_n))$. By Part (2) of Lemma 3.1, we have $D(J|W) = (1, 1, \ldots, 1)$. To continue the proof let I' = ann(I). Since I + I' = R, I is not adjacent to I'. Since |[I']| > 1 (note that for every $X \in V(\Omega(R)), |[X]| > 1$), $W \cap [I'] \neq \emptyset$. This implies that for every $K \in W \cap [I']$, K is not adjacent to I and hence $D(I|W) \neq (1, 1, \ldots, 1)$. Therefore, $D(I|W) \neq D(J|W)$.

Case 2. $I \neq (Nil(R_1), \ldots, Nil(R_n))$ and $J \neq (Nil(R_1), \ldots, Nil(R_n))$.

Since $I \approx J$, for some $1 \leq i \leq n$, $I_i = 0$ and $J_i = R_i$ or $J_i = 0$ and $I_i = R_i$. Without loss of generality, we may assume that $I_1 = 0$ and $J_1 = R_1$. So $I = (0, I_2, \ldots, I_n)$ and $J = (R_1, J_2, \ldots, J_n)$. Let $0 \neq K \subseteq Nil(R_1)$ and $X = (K, R_2, \ldots, R_n)$. This, clearly follows that, $X \in W$, d(I, X) = 1 and d(J, X) = 2. Therefore, $D(I|W) \neq D(J|W)$.

Since $|A| = 2^n - 1$, we have $|W| = |A(R)^*| - (2^n - 1) = |A(R)^*| - 2^n + 1$. So

$$dim_M(\Omega(R)) \le |A(R)^*| - 2^n + 1.$$

Corollary 3.1. Suppose that $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring such that for every $1 \le i \le n$, $|A(R_i)^*| = 1$. Then $\dim_M(\Omega(R)) = 3^n - 2^n - 1$.

Lemma 3.2. Let $R \cong R_1 \times \cdots \times R_n \times F_1 \times \cdots \times F_m$, $n \ge 1$, $m \ge 1$ where each (R_i, \mathfrak{m}_i) is an Artinian local ring with $\mathfrak{m}_i \ne (0)$ and each F_i is a field and let $S \cong F'_1 \times \cdots \times F'_{n+m}$ where each F'_i is a field. Then $\dim_M(\Omega(R)[A]) = \dim_M(\Omega(S)) = m + n$, where $A = \{(I_1, \ldots, I_{n+m}) \in V(\Omega(R)) \mid I_i \in \{0, R_1, \ldots, R_n, F_1, \ldots, F_m\}\} \cup \{(Nil(R_1), \ldots, Nil(R_n), 0, \ldots, 0)\}.$

Proof. It is not hard to see that $\Omega(R)[A] \cong \Omega(S)$ and hence by Theorem 2.1, $\dim_M(\Omega(R)[A]) = \dim_M(\Omega(S)) = m + n.$

Theorem 3.2. Let $R \cong R_1 \times \cdots \times R_n \times F_1 \times \cdots \times F_m$, be a finite ring, $n \ge 1$, $m \ge 1$ where each (R_i, \mathfrak{m}_i) is an Artinian local ring with $\mathfrak{m}_i \ne (0)$ and each F_i is a field. Then $\dim_M(\Omega(R)) = |A(R)^*| - 2^{n+m} + m + 1$.

Proof. Assume that $I = (I_1, \ldots, I_n)$ and $J = (J_1, \ldots, J_n)$ are vertices of $\Omega(R)$. Define the relation \sim on $V(\Omega(R))$ as follows: $I \sim J$, whenever for every $1 \leq i \leq n$, " $I_i \subseteq Nil(R_i)$ if and only if $J_i \subseteq Nil(R_i)$ ".

Clearly, \sim is an equivalence relation on $V(\Omega(R))$. The equivalence class of I is denoted by [I]. Suppose that X and Y are two elements of the equivalence class of I. Since $X \sim Y$, by part (2) of Lemma 3.1, we can easily get N(X) = N(Y). Now, since the number of equivalence classes is $2^{n+m} - 1$, then

$$dim_M(\Omega(R)) \ge |A(R)^*| - (2^{n+m} - 1) = |A(R)^*| - 2^{n+m} + 1,$$

by Remark 3.1. Now, we put

$$A = \{ (I_1, \dots, I_{n+m}) \in V(\Omega(R)) \mid I_i \in \{0, R_1, \dots, R_n, F_1, \dots, F_m\} \} \cup \{ (Nil(R_1), \dots, Nil(R_n), 0, \dots, 0) \}.$$

In fact, $|A| = 2^{n+m} - 1$ and for every equivalence class say [I], $|[I] \cap A| = 1$. This means that if W is a resolving set for $\Omega(R)$, then $A(R)^* - A \subseteq W$.

Also, for every $n+1 \le i \le n+m$, let

$$K_i = (R_1, R_2, \dots, R_n, J_{n+1}, J_{n+2}, \dots, J_{n+m})$$

such that $J_j = 0$ if i = j, and if $i \neq j$, $J_j = F_j$ and let

 $B = \{K_{n+1}, K_{n+2}, \dots, K_{n+m}\}$ $C = \{(0, 0, \dots, 0, I_{n+1}, \dots, I_{n+m}) \in V(\Omega(R)) \mid I_{n+j} \in \{0, F_1, \dots, F_m\} \text{ for every } 1 \le j \le m\} \cup \{(Nil(R_1), \dots, Nil(R_n), 0, \dots, 0)\}.$

Now, let $I = (I_1, \ldots, I_{n+m}) \in A(R)^* - A \subseteq W$. Then since |[I]| > 1, for some $1 \leq i \leq n$, $I_i \subseteq Nil(R_i)$. So by Lemma 3.1, every element of $A(R)^* - A$ is adjacent to all elements of $C \subseteq A$. Thus we need to add some elements of A to $A(R)^* - A$ to get W. For this by proof of Theorem 2.1 for reduced rings and Lemma 3.2, the best candidate is the set of elements of B. So $B \subseteq W$. This implies that

$$dim_M(\Omega(R)) \ge |A(R)^*| - 2^{n+m} + m + 1.$$

We prove that $W = \{A(R)^* - A\} \cup B$ is a resolving set and consequently the metric basis for the graph $\Omega(R)$. But this is clear by Theorem 2.1 and Lemma 3.2.

We close this section with the following example which is related to Theorem 3.2.

Example 3.1.

(1) Let $R = \mathbb{Z}_4 \times \mathbb{Z}_2$. Then n = m = 1 (in Theorem 3.2). We have $|A(R)^*| = 4$. By Theorem 3.2, $\dim_M(\Omega(R)) = |A(R)^*| - 2^{n+m} + m + 1 = 4 - 2^2 + 1 + 1 = 2$. Also, by the following figure, we regain that $\dim_M(\Omega(R)) = 2$.

$$\Omega(\mathbb{Z}_4 \times \mathbb{Z}_2)$$

(2) Let $R = \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Then n = m = 2 (in Theorem 3.2). We have $|A(R)^*| = 34$.

 $A = \{ (0, \mathbb{Z}_4, \mathbb{Z}_2, \mathbb{Z}_2), (\mathbb{Z}_4, 0, \mathbb{Z}_2, \mathbb{Z}_2), (\mathbb{Z}_4, \mathbb{Z}_4, 0, \mathbb{Z}_2), (\mathbb{Z}_4, \mathbb{Z}_4, \mathbb{Z}_2, 0), (0, 0, \mathbb{Z}_2, \mathbb{Z}_2), (0, \mathbb{Z}_4, 0, \mathbb{Z}_2), (0, \mathbb{Z}_4, \mathbb{Z}_2, 0), (\mathbb{Z}_4, 0, \mathbb{Z}_2, 0), (\mathbb{Z}_4, 0, 0, \mathbb{Z}_2), (\mathbb{Z}_4, \mathbb{Z}_4, 0, 0), (\mathbb{Z}_4, 0, 0, 0), (0, \mathbb{Z}_4, 0, 0), (0, 0, \mathbb{Z}_2), ((2), (2), (0)) \}.$

Since $A(R)^* = \bigcup_{I \in A} [I]$ and for every $X, Y \in [I], N(X) = N(Y)$, we must have $A(R)^* - A \subseteq W$ (in fact $X \in W$ or $Y \in W$). Now, let

 $B = \{ (\mathbb{Z}_4, \mathbb{Z}_4, \mathbb{Z}_2, 0), (\mathbb{Z}_4, \mathbb{Z}_4, 0, \mathbb{Z}_2) \},\$

 $C = \{(0, 0, 0, \mathbb{Z}_2), (0, 0, \mathbb{Z}_2, 0), (0, 0, \mathbb{Z}_2, \mathbb{Z}_2), ((2), (2), 0, 0)\}.$

So by Lemma 3.1, every element of $A(R)^* - A$ is adjacent to all elements of C and since |C| = 4, we need to add at least two elements of A to $A(R)^* - A$ to get W. So we can let $B \subseteq W$. Therefore,

 $W = \{ ((2), \mathbb{Z}_4, \mathbb{Z}_2, \mathbb{Z}_2), (\mathbb{Z}_4, (2), \mathbb{Z}_2, \mathbb{Z}_2), ((2), (2), \mathbb{Z}_2, \mathbb{Z}_2), ((2), (2), 0, \mathbb{Z}_2), ((2), (2), 0, \mathbb{Z}_2) \}$ $((2), (2), \mathbb{Z}_2, 0), ((2), \mathbb{Z}_4, 0, \mathbb{Z}_2), ((2), \mathbb{Z}_4, \mathbb{Z}_2, 0), (\mathbb{Z}_4, (2), \mathbb{Z}_2, 0), (\mathbb{Z}_4, (2), 0, \mathbb{Z}_2), (\mathbb{Z}_4, \mathbb{Z}_2), \mathbb{Z}_4, \mathbb{Z$ $((2), 0, 0, \mathbb{Z}_2), ((2), 0, \mathbb{Z}_2, 0), (0, (2), \mathbb{Z}_2, \mathbb{Z}_2), (0, (2), 0, \mathbb{Z}_2), (0, (2), \mathbb{Z}_2, 0), (0$ $((2), 0, 0, 0), (0, (2), 0, 0)\}.$ We have: $D((\mathbb{Z}_4, 0, \mathbb{Z}_2, \mathbb{Z}_2)|W) = (2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1),$ $D((\mathbb{Z}_4, \mathbb{Z}_4, 0, 0)|W) = (2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1),$

It is seen that for every $I, J \in A(R)^* - W$ with $I \neq J$, $D(I|W) \neq D(J|W)$ and so W is a resolving set and consequently the metric basis for the graph $\Omega(\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2).$

References

- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447.
- [2] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 (2014), 108–121.
- [3] A. Badawi, On the dot product graph of a commutative ring, *Comm. Algebra*, 43 (2015), 43–50.
- [4] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, (1969).
- [5] W. Bruns, J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, (1997).
- [6] N. Ganesan, Properties of rings with a finite number of zero-divisors, Math. Ann., 157 (1964), 215–218.
- [7] S. Pirzada, R. Raja, S. P. Redmond, Locating sets and numbers of graphs associated to commutative rings, J. Algebra Appl., 13:7 (2014), 1450047 (18pp).
- [8] S. Pirzada, R. Raja, On the metric dimension of a zero-divisor graph, Comm. Algebra, 45:4 (2017), 1399–1408.
- [9] R. Raja, S. Pirzada, S. P. Redmond, On Locating numbers and codes of zero-divisor graphs associated with commutative rings, J. Algebra Appl., 15:1 (2016), 1650014 (22pp).
- [10] F. Harary, R. A. Melter, On the metric dimension of a graph, Ara Combin., 2 (1976), 191–195.
- [11] R. Nikandish, M.J. Nikmehr, M. Bakhtyiari, Coloring of the annihilator graph of a commutative ring, J. Algebra Appl., 15:6 (2016), 1650124 (13 pp).
- [12] J. A. Huckaba, Commutative Rings with Zero Divisors, 2nd ed., Prentice Hall, Upper Saddle River, (1988).

- [13] T. Y. Lam, A First Course in Non-Commutative Rings Springer-Verlag, New York, Inc, (1991).
- [14] S. Visweswaram, H. D. Patel, A graph associated with the set of all nonzero annihilating ideals of a commutative Ring, *Discrete Mathematics*, *Algorithms and Applications*, 6:4 (2014), 1450047 (22 pp).
- [15] D.B. West, *Introduction to Graph Theory*, 2nd ed, Prentice Hall, Upper Saddle River, (2001).

Nazi Abachi, Department of Mathematics, Central Tehran Branch, Islamic Azad University Tehran, Iran, P. O. Box 14168-94351. Email: n_abachi@yahoo.com

Shervin Sahebi, Department of Mathematics, Central Tehran Branch, Islamic Azad University Tehran, Iran, P. O. Box 14168-94351. Email: sahebi@iauctb.ac.ir