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On the metric dimension of a total graph of
non-zero annihilating ideals

Nazi Abachi and Shervin Sahebi

Abstract

Let R be a commutative ring with identity which is not an integral
domain. An ideal I of a ring R is called an annihilating ideal if there
exists r € R — {0} such that Ir = (0). Visweswaran and H. D. Patel
associated a graph with the set of all non-zero annihilating ideals of R,
denoted by Q(R) as the graph with the vertex-set A(R)*, the set of
all non-zero annihilating ideals of R and two distinct vertices I, J are
joined if and only if 14 J is also an annihilating ideal of R. In this paper,
we study the metric dimension of Q(R) and provide metric dimension
formulas for Q(R).

1 Introduction

Assigning a metric dimension to a graph was first introduced by Harary and
Melter in [10]. Later, this concept was applied to graphs associated to com-
mutative rings. (see, for example [7, 8, 9]). In this paper, we study the metric
dimension of a total graph of non-zero annihilating ideals.

Throughout this paper, all rings are assumed to be commutative with iden-
tity and they are not fields. The sets of all zero-divisors, nilpotent elements,
minimal prime ideals, maximal ideals and Jacobson radical of R are denoted
by Z(R), Nil(R), Min(R), Max(R) and J(R), respectively. For a subset T' of
aring R we let T* = T — {0}. An ideal with non-zero annihilator is called an
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annihilating ideal. The set of annihilating ideals of R is denoted by A(R). For
every subset I of R, we denote the annihilator of I by ann(I). Some more
definitions about commutative rings can be find in [4, 5].

We use the standard terminology of graphs following [15]. By G = (V, E),
we mean a graph, where V and E are the set of vertices and edges, respectively.
If we can find at least one path between two any vertices of G, then G is called
connected. Also, the length of the shortest path between two distinct vertices
x and y is denoted by d(z,y) (note that d(z,y) = oo, if there is not any
path between z and y) and diam(G) = max{d(z,y) |z,y € V} is called the
diameter of G.

The girth of a graph G, denoted by girth(G), is the length of the shortest
cycle in G. The graph H = (Vy, Ey) is a subgraph of G if Vj C V and
Ey C E. Moreover, H is called an induced subgraph by Vj, denoted by
GVol, it Vi € V and Ey = {{u,v} € E|u,v € V}. Let x € V, then
N(z)={y € V|{z,y} € E} and N[z] = N(z) U {z}.

Let G = (V, E) be a connected graph, S = {v1,vs,...,vr} be an ordered
subset of V and v € V(G) \ S. The metric representation of v with respect to
S is the k-vector D(v|S) = (d(v,v1),d(v,v2),...,d(v,vt)). For S C V, if for
every v,u € V(G) — S, D(u|S) = D(v|S) implies that u = v, then S is called
the resolving set for G. The metric basis for G is a resolving set S of minimum
cardinality and the number of elements in S is called the metric dimension of
G (dimpy (Q)).

For a graph G with |V (G)| > 2, if for allz € V(G)—{u, v}, d(u,z) = d(v,x)
(u, v are two distinct vertices), then u, v are distance similar. Clearly, if either
u—v ¢ FE(G) and N(u) = N(v) or u —v € E(G) and N[u] = N[v], then two
distinct vertices u and v are distance similar.

An k-partite graph is one whose vertex set can be partitioned into k subsets
so that an edge has both ends in no subset. A complete k-partite graph is an
k-partite graph in which each vertex is adjacent to every vertex that is not in
the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes
m and n is denoted by K™ ™. If m = 1, then the bipartite graph is called star
graph. A complete graph is a graph such that there exist an edge detween
each pair of vertices and is denoted by K™.

Let R be a commutative ring with identity which is not an integral domain.
An ideal I of a ring R is called an annihilating ideal if there exists r € R— {0}
such that Ir = (0). Visweswaran and H. D. Patel associated a graph with
the set of all non-zero annihilating ideals of R, denoted by Q(R) as the graph
with the vertex-set A(R)*, the set of all non-zero annihilating ideals of R and
two distinct vertices I, J are joined if and only if I 4 J is also an annihilating
ideal of R. In this paper, we study the metric dimension of Q(R) and provide
metric dimension formulas for Q(R).
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2  Metric dimension of a total graph of a reduced ring

Let R be a commutative ring. In this section, we provide a metric dimension
formula for a total graph of non-zero annihilating ideals when R is reduced.

Lemma 2.1. Suppose that R is a commutative ring with identity and Q(R) is
connected. If R is not an integral domain, then the following statements are
equivalent.

(1) dimpr(Q(R)) is finite.

(2) R has only finitely many ideals.

Proof. (1) = (2) Assume that dim s (Q(R)) is finite and for some non-negative
integer n, let W = {I1,Is,...,I,} be the metric basis for Q(R). Since
diam(Q2(R)) < 2 (see [14]), for every I € A(R)* — W, there are only (2 + 1)
choices for D(I|W). So |A(R)*| < 3™ 4+ n and hence R has only finitely many
ideals.

(2) = (1) is clear. O

If R is a reduced ring with finitely many ideals, then R is Artinian ring
and so by [4, Theorem 8.7], R is direct product of finitely many fields. Using
this, we prove the following result.

Theorem 2.1. Suppose that R is a reduced ring with identity that is not an
integral domain. If Q(R) is connected and dimp (Q(R)) is finite, then:

(1) If Max(R)| = 3, then dimp (2(R)) = 2.

(2) If Max(R)| =n > 4, then dimp (2(R)) = n.

Proof. (1) If n = 3, then R & F; X Fy X F3, where F; is a field for every
1 <4 < 3. Now, we put W = {(0) x Fy x F3,F; x (0) x F3} and by Figure 1,
we can easily get
D((0) x Fy x (0)|W) =
D(F; % (0) x (0) W)
D((0) x (0) x Fs|W) =
D(Fy x F» x (0)|W) = (2,2).
So for every x,y € V(QUR)) — W, D(z|W) # D(y|W) and hence

Il
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(0) X Fo x Fg

(0) X Fg x (0)

F; x (0) x (0) (0) x (0) X F3

F1 x Fg x (0) F1 x (0) x F3

Figure 1: Q(F; x Fy x F3)

(2) Assume that n > 4. By Lemma 2.1, R~ F} x -+ X F},, where F; is a
field for every 1 < i < n. We show that dimp(Q(R)) = n. Indeed, we have
the following claims:

Claim 1. dimy (2(R)) > n.

Since R is direct product of finitely many fields, by Lemma 2.1, dim s (Q(R))
is finite. So we can let for some integer k, W = {I1, I, ..., Ix} be the metric
basis for Q(R). On the other hand, since, diam(Q2(R)) € {1,2} (see [14]), for
every I € A(R)* — W, there are only 2* possibilities for D(I|W). This implies
that |A(R)*| — k < 2k, Since |A(R)*| = 2" — 2, 2" — 2 — k < 2% and hence
2" < 28 4+ 2 4+ k. Since n > 4, we have k > n. Therefore, dimy;(Q(R)) > n.

Claim 2. dimp(2(R)) < n.

For every 1 < i < n, let (I1,ls,...,I,) = m; € A(R)* such that I, =0
and I; = Fj, for every 1 < j <n with i # j. We put W = {m;, mp,..., m,}
(in fact W = Maxz(R)). We show that W is the resolving set for Q(R).
For this, let I,J € V(QR)) — W and I # J. We need only to show that
DI|W) # D(J|W). Let I = (I, I, ..., I,) and J = (Jy, Ja,. .., Jn). Since
I # J, forsomel <i<mn, I; =0and J; = F; or I; = F; and J; = 0.
Without loss of generality, we can assume that I; = 0 and J; = F;. Now,
it is easy to see that d(I,m;) = 1 and d(J,m;) = 2. This clearly shows that
D(I|W) # D(J|W). Therefore dimps(Q(R)) < n.

Now, by Claim 1, 2 we have dim(2(R)) = n, for n > 4. O
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3  Metric dimension of a total graph of a non-reduced
ring

In this section, we study the metric dimension of Q(R) when R is non-reduced.
We begin with the following useful lemma.

Lemma 3.1. Let R = Ry X -+ X R,,, where R; is an Artinian local ring for
every 1 <i<mn. andlet I = (Iy,...,1,) and J = (J1,...,Jn). Then

(1) I —J is an edge of Q(R) if and only if for some 1 < i <mn, I;,J; C
Nil(R;).

(2) If 0 # I C J(R), then I is adjacent to all other vertices in Q(R).

Proof. (1) Let I — J be an edge of Q(R). If for every 1 <i <n, I; ¢ Nil(R;)
or J; ¢ Nil(R;), then for every 1 < i < n, I; = R; or J; = R;. This implies
that I +J = R and hence I — J is not an edge of Q(R), a contradiction. The
converse is clear.

(2) By Part (1) is clear. O

Remark 3.1. For a connected graph G, if V1,Va, ..., Vi is a partition of
V(G) such that for every 1 < i < k, x,y € V; implies that N(x) = N(y).
Then dimpy (G) > |V(G)| — k.

Theorem 3.1. Suppose that R &£ Ry X -+ X Ry, where R; is an Artinian
local ring such that for every 1 <i <n, |A(R;)*| > 1. Then dimy(2(R)) =
|[A(R)*| — 2™ 4+ 1.

Proof. Suppose that I = (I1,...,1,) and J = (Jy,...,J,) are vertices of
Q(R). Define the relation ~ on V(Q(R)) as follows: I ~ J, whenever for each
1<i<n, “I; C Nil(R;) if and only if J; C Nil(R;)”.

Clearly, ~ is an equivalence relation on V(Q(R)). The equivalence class of
I is denoted by [I]. Suppose that X and Y are two elements of the equivalence
class of I. Since X ~ Y, by part (1) of Lemma 3.1, we can easily get N(X) =
N(Y). Now, since the number of equivalence classes is 2" — 1, then

dimp (QUR)) > [AR)"] — (2" = 1) = |[A(R)*| - 2" + 1,

by Remark 3.1.
Now, we show that

dimar (UR)) < |Z(R)*| — 2" + 1.

We put
54): {(I1,..., 1)) e VIUR)) | I; € {0, Ry, ..., Ry} for every 1 <i<n}U
{(Nil(Ry1),...,Nil(Ry,))}
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W = A(R)* — A.

We show that W is a resolving set and consequently the metric basis for
the graph Q(R). For this, let I,J € Aand I # J. Let I = (I4,...,1,) and
J = (J1,...,Jn). We show that D(I|W) # D(J|W).

We have the following cases:

Case 1. I = (Nil(Ry),...,Nil(Ry)) or J = (Nil(Ry),...,Nil(Ry)).
Without loss of generality, we may assume that I # (Nil(R1),..., Nil(R,))
and J = (Nil(Ry), ..., Nil(R,)). By Part (2) of Lemma 3.1, we have D(J|W) =
(1,1,...,1).To continue the proof let I’ = ann(I). Since I + I’ = R, I is not
adjacent to I’. Since |[I']| > 1 (note that for every X € V(Q(R)), |[X]| > 1),
W N [I'] # 0. This implies that for every K € W N [I'], K is not adjacent to
I and hence D(I|W) # (1,1,...,1). Therefore, D(I|W) # D(J|W).

Case 2. I # (Nil(Ry),...,Nil(Ry)) and J # (Nil(Ry),..., Nil(R,)).

Since I » J, for some 1 < i <n, I; =0and J; = R; or J; = 0 and
I, = R;. Without loss of generality, we may assume that I; =0 and J; = R;.
So I =1(0,Is...,1,) and J = (Ry,Jo,...,J,). Let 0 # K C Nil(R;) and
X = (K,Ra,...,R,). This, clearly follows that, X € W, d(I,X) = 1 and
d(J, X) = 2. Therefore, D(I|W) # D(J|W).

Since |A| = 2™ — 1, we have |W| = |A(R)*| — (2" — 1) = |A(R)*| — 2" + 1.
So

dimp (Q(R)) < |A(R)*| — 2" + 1.

O

Corollary 3.1. Suppose that R = Ry X --- X R,, where R; is an Artinian
local ring such that for every 1 <i <n, |A(R;)*| = 1. Then dimy(2(R)) =
3n—2n —1.

Lemma 3.2. Let R 2 Ry X -+ X R, xFy x -+ xXF,,n>1 m>1
where each (R;,m;) is an Artinian local ring with m; # (0) and each F;
is a field and let S = F{ x --- x F; . where each F] is a field. Then
dimp (QR)[A]) = dimp(2(S)) = m +n, where A = {(I1,...,Intm) €
V(QR)) | I; € {0,Ry,...,Rp, F1,..., Ep }JU{(NGl(Ry), ..., Nil(R,),0,...,0)}.

Proof. Tt is not hard to see that Q(R)[A] = Q(S) and hence by Theorem 2.1,
dimpr(QR)[A]) = dimp (Q2(S)) = m +n. O

Theorem 3.2. Let R Ry X--- X R, Xx F} X +-- X Fp,, be a finite ring, n > 1,
m > 1 where each (R;,m;) is an Artinian local ring with m; # (0) and each
F; is a field. Then dimp(QR)) = |A(R)*| — 2" +m + 1.

Proof. Assume that I = (I,...,I,) and J = (Ji,...,J,) are vertices of
Q(R). Define the relation ~ on V(Q(R)) as follows: I ~ J, whenever for
every 1 <i<mn, “I; C Nil(R;) if and only if J; C Nil(R;)”.
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Clearly, ~ is an equivalence relation on V(Q(R)). The equivalence class of
I is denoted by [I]. Suppose that X and Y are two elements of the equivalence
class of I. Since X ~ Y, by part (2) of Lemma 3.1, we can easily get N(X) =
N(Y). Now, since the number of equivalence classes is 2" — 1, then

dimar (AR)) = [A(R)| - (2™ — 1) = [A(R)"] - 2" + 1,

by Remark 3.1. Now, we put
A= {([1, Cey In+m) S V(Q(R)) | I; € {O,Rl, ceys Ry Fy,y ol s Fm}}U
{(Nil(Ry),...,Nil(Ry),0,...,0)}.
In fact, |A| = 2"T™ —1 and for every equivalence class say [I], |[I[]NA] = 1.
This means that if W is a resolving set for Q(R), then A(R)* — A C W.
Also, for every n+1<i<n+m, let

Ki = (R13R27"'7R7L7Jn+1a<]n+27~--a<]n+m)
such that J; =0 if i = j, and if i # j, J; = F}; and let

B = {Kn+laK7L+27 o 7Kn+m}
C=A{(0,0,...,0, Ins1,...,Intm) € V(QAUR)) | Lyj €
{0, Fy,...,Fp}for every 1 < j <m} U{(Nil(Ry),...,Nil(Ry),0,...,0)}.

Now, let I = (I,...,Intm) € A(R)* — A C W. Then since |[I]| > 1, for
some 1 < i <mn, I; C Nil(R;). So by Lemma 3.1, every element of A(R)* — A
is adjacent to all elements of C' C A. Thus we need to add some elements of
A to A(R)* — A to get W. For this by proof of Theorem 2.1 for reduced rings
and Lemma 3.2, the best candidate is the set of elements of B. So B C W.
This implies that

dimar(Q(R)) > |A(R)*| — 2"™ + m + 1.

We prove that W = {A(R)* — A} U B is a resolving set and consequently the
metric basis for the graph Q(R). But this is clear by Theorem 2.1 and Lemma
3.2. O

We close this section with the following example which is related to The-
orem 3.2.

Example 3.1.

(1) Let R = Z4 X Zs. Then n = m = 1 (in Theorem 3.2). We have
|A(R)*| = 4. By Theorem 3.2, dimy (Q(R)) = |[A(R)*| — 2" +m+1 =4 —
22 +1+1 = 2. Also, by the following figure, we regain that dim;(Q(R)) = 2.
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(0) X Zg

< 2> xZy Zy x (0)

Q(Z4 X 7
(2)LetR:Z4XZ4XZ2xZ2.Thenn— =
have |A(R)*| = 34.
A={(0,24,25,75),(Z4,0,Z2,Z2),(Zy,7Z4,0,Z2),(Z4,Zs,Z5,0), (0,0, Zs, Zs),
(0,24,0722)7 (0324722,0)7 (Z47072270)a (Z47 Oa O7ZQ)a (243 Z47 Oa 0)7 (Z4a 0,070)3
(0,Z4,0,0),(0,0,Zs,0),(0,0,0,Zs), ((2), (2),0,0) }.
Since A(R)* = Urecall] and for every X, Y € [I], N(X) = N(Y), we must
have A(R)* — ACW (in fact X € W or Y € W). Now, let
B ={(24,24,75,0),(Z4,74,0,Z5)},
¢ = {(Oa()van?)a (Oa 0,Za, O)’ (07 0, Z2722)7 ((2)7 (2)7 0, 0)}
So by Lemma 3.1, every element of A(R)* — A is adjacent to all elements of
C and since |C| = 4, we need to add at least two elements of A to A(R)* — A
to get W. So we can let B C W. Therefore,
W ={((2), Z4, L2, Z2), (Z4, (2), L2, L), (( ), (2),Z2,Z5),((2), (2),0, Z2),
((2),(2),Z2,0),((2), 24,0, Z3), ((2), Z4, Z3,0), (Z4, (2), Z2,0), (Z4, (2), 0, Zs),
(Z4vz4aZ270)a(Z4aZ4van2)v(Z4v( )a ) ) ((2) Z4a 0)7((2)7( ) 22722)7
((2), 070>ZQ)7 ((2)7 0= Z27 0)7 (07 (2)a 22722)7 (0, ( ) 2)7 ( ) ( ) 2270)7
((2),0,0,0),(0,(2),0,0)}.
We have:

2)
2 (in Theorem 3.2). We

—_ = = =

SRR
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D(((2),(2),0,0)|W) = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).
It is seen that for every I,J € A(R)* —W with I # J, D(I|W) # D(J|W)

and so W is a resolving set and consequently the metric basis for the graph
Q(Z4 X Z4 X ZQ X Zg)
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