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On the metric dimension of a total graph of
non-zero annihilating ideals

Nazi Abachi and Shervin Sahebi

Abstract

Let R be a commutative ring with identity which is not an integral
domain. An ideal I of a ring R is called an annihilating ideal if there
exists r ∈ R − {0} such that Ir = (0). Visweswaran and H. D. Patel
associated a graph with the set of all non-zero annihilating ideals of R,
denoted by Ω(R) as the graph with the vertex-set A(R)∗, the set of
all non-zero annihilating ideals of R and two distinct vertices I, J are
joined if and only if I+J is also an annihilating ideal of R. In this paper,
we study the metric dimension of Ω(R) and provide metric dimension
formulas for Ω(R).

1 Introduction

Assigning a metric dimension to a graph was first introduced by Harary and
Melter in [10]. Later, this concept was applied to graphs associated to com-
mutative rings. (see, for example [7, 8, 9]). In this paper, we study the metric
dimension of a total graph of non-zero annihilating ideals.

Throughout this paper, all rings are assumed to be commutative with iden-
tity and they are not fields. The sets of all zero-divisors, nilpotent elements,
minimal prime ideals, maximal ideals and Jacobson radical of R are denoted
by Z(R), Nil(R), Min(R), Max(R) and J(R), respectively. For a subset T of
a ring R we let T ∗ = T − {0}. An ideal with non-zero annihilator is called an
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annihilating ideal. The set of annihilating ideals of R is denoted by A(R). For
every subset I of R, we denote the annihilator of I by ann(I). Some more
definitions about commutative rings can be find in [4, 5].

We use the standard terminology of graphs following [15]. By G = (V,E),
we mean a graph, where V and E are the set of vertices and edges, respectively.
If we can find at least one path between two any vertices of G, then G is called
connected . Also, the length of the shortest path between two distinct vertices
x and y is denoted by d(x, y) (note that d(x, y) = ∞, if there is not any
path between x and y) and diam(G) = max{d(x, y) |x, y ∈ V } is called the
diameter of G.

The girth of a graph G, denoted by girth(G), is the length of the shortest
cycle in G. The graph H = (V0, E0) is a subgraph of G if V0 ⊆ V and
E0 ⊆ E. Moreover, H is called an induced subgraph by V0, denoted by
G[V0], if V0 ⊆ V and E0 = {{u, v} ∈ E |u, v ∈ V0}. Let x ∈ V , then
N(x) = {y ∈ V | {x, y} ∈ E} and N [x] = N(x) ∪ {x}.

Let G = (V,E) be a connected graph, S = {v1, v2, . . . , vk} be an ordered
subset of V and v ∈ V (G) \ S. The metric representation of v with respect to
S is the k-vector D(v|S) = (d(v, v1), d(v, v2), . . . , d(v, vk)). For S ⊆ V , if for
every v, u ∈ V (G)− S, D(u|S) = D(v|S) implies that u = v, then S is called
the resolving set for G. The metric basis for G is a resolving set S of minimum
cardinality and the number of elements in S is called the metric dimension of
G (dimM (G)).

For a graph G with |V (G)| ≥ 2, if for all x ∈ V (G)−{u, v}, d(u, x) = d(v, x)
(u, v are two distinct vertices), then u, v are distance similar. Clearly, if either
u− v 6∈ E(G) and N(u) = N(v) or u− v ∈ E(G) and N [u] = N [v], then two
distinct vertices u and v are distance similar.

An k-partite graph is one whose vertex set can be partitioned into k subsets
so that an edge has both ends in no subset. A complete k-partite graph is an
k-partite graph in which each vertex is adjacent to every vertex that is not in
the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes
m and n is denoted by Km,n. If m = 1, then the bipartite graph is called star
graph. A complete graph is a graph such that there exist an edge detween
each pair of vertices and is denoted by Kn.

Let R be a commutative ring with identity which is not an integral domain.
An ideal I of a ring R is called an annihilating ideal if there exists r ∈ R−{0}
such that Ir = (0). Visweswaran and H. D. Patel associated a graph with
the set of all non-zero annihilating ideals of R, denoted by Ω(R) as the graph
with the vertex-set A(R)∗, the set of all non-zero annihilating ideals of R and
two distinct vertices I, J are joined if and only if I + J is also an annihilating
ideal of R. In this paper, we study the metric dimension of Ω(R) and provide
metric dimension formulas for Ω(R).
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2 Metric dimension of a total graph of a reduced ring

Let R be a commutative ring. In this section, we provide a metric dimension
formula for a total graph of non-zero annihilating ideals when R is reduced.

Lemma 2.1. Suppose that R is a commutative ring with identity and Ω(R) is
connected. If R is not an integral domain, then the following statements are
equivalent.

(1) dimM (Ω(R)) is finite.
(2) R has only finitely many ideals.

Proof. (1)⇒ (2) Assume that dimM (Ω(R)) is finite and for some non-negative
integer n, let W = {I1, I2, . . . , In} be the metric basis for Ω(R). Since
diam(Ω(R)) ≤ 2 (see [14]), for every I ∈ A(R)∗ −W , there are only (2 + 1)n

choices for D(I|W ). So |A(R)∗| ≤ 3n + n and hence R has only finitely many
ideals.

(2)⇒ (1) is clear.

If R is a reduced ring with finitely many ideals, then R is Artinian ring
and so by [4, Theorem 8.7], R is direct product of finitely many fields. Using
this, we prove the following result.

Theorem 2.1. Suppose that R is a reduced ring with identity that is not an
integral domain. If Ω(R) is connected and dimM (Ω(R)) is finite, then:

(1) If |Max(R)| = 3, then dimM (Ω(R)) = 2.
(2) If |Max(R)| = n ≥ 4, then dimM (Ω(R)) = n.

Proof. (1) If n = 3, then R ∼= F1 × F2 × F3, where Fi is a field for every
1 ≤ i ≤ 3. Now, we put W = {(0)× F2 × F3, F1 × (0)× F3} and by Figure 1,
we can easily get

D((0)× F2 × (0)|W ) = (1, 2),
D(F1 × (0)× (0)|W ) = (2, 1),
D((0)× (0)× F3|W ) = (1, 1),
D(F1 × F2 × (0)|W ) = (2, 2).
So for every x, y ∈ V (Ω(R))−W , D(x|W ) 6= D(y|W ) and hence
dimM (Ω(R)) = 2.
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Figure 1: Ω(F1 × F2 × F3)

(2) Assume that n ≥ 4. By Lemma 2.1, R ∼= F1 × · · · × Fn, where Fi is a
field for every 1 ≤ i ≤ n. We show that dimM (Ω(R)) = n. Indeed, we have
the following claims:

Claim 1. dimM (Ω(R)) ≥ n.
Since R is direct product of finitely many fields, by Lemma 2.1, dimM (Ω(R))

is finite. So we can let for some integer k, W = {I1, I2, . . . , Ik} be the metric
basis for Ω(R). On the other hand, since, diam(Ω(R)) ∈ {1, 2} (see [14]), for
every I ∈ A(R)∗−W , there are only 2k possibilities for D(I|W ). This implies
that |A(R)∗| − k ≤ 2k. Since |A(R)∗| = 2n − 2, 2n − 2 − k ≤ 2k and hence
2n ≤ 2k + 2 + k. Since n ≥ 4, we have k ≥ n. Therefore, dimM (Ω(R)) ≥ n.

Claim 2. dimM (Ω(R)) ≤ n.
For every 1 ≤ i ≤ n, let (I1, I2, . . . , In) = mi ∈ A(R)∗ such that Ii = 0

and Ij = Fj , for every 1 ≤ j ≤ n with i 6= j. We put W = {m1,m2, . . . ,mn}
(in fact W = Max(R)). We show that W is the resolving set for Ω(R).
For this, let I, J ∈ V (Ω(R)) − W and I 6= J . We need only to show that
D(I|W ) 6= D(J |W ). Let I = (I1, I2, . . . , In) and J = (J1, J2, . . . , Jn). Since
I 6= J , for some 1 ≤ i ≤ n, Ii = 0 and Ji = Fi or Ii = Fi and Ji = 0.
Without loss of generality, we can assume that I1 = 0 and J1 = F1. Now,
it is easy to see that d(I,m1) = 1 and d(J,m1) = 2. This clearly shows that
D(I|W ) 6= D(J |W ). Therefore dimM (Ω(R)) ≤ n.

Now, by Claim 1, 2 we have dimM (Ω(R)) = n, for n ≥ 4.
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3 Metric dimension of a total graph of a non-reduced
ring

In this section, we study the metric dimension of Ω(R) when R is non-reduced.
We begin with the following useful lemma.

Lemma 3.1. Let R ∼= R1 × · · · × Rn, where Ri is an Artinian local ring for
every 1 ≤ i ≤ n. and let I = (I1, . . . , In) and J = (J1, . . . , Jn). Then

(1) I − J is an edge of Ω(R) if and only if for some 1 ≤ i ≤ n, Ii, Ji ⊆
Nil(Ri).

(2) If 0 6= I ⊆ J(R), then I is adjacent to all other vertices in Ω(R).

Proof. (1) Let I − J be an edge of Ω(R). If for every 1 ≤ i ≤ n, Ii * Nil(Ri)
or Ji * Nil(Ri), then for every 1 ≤ i ≤ n, Ii = Ri or Ji = Ri. This implies
that I + J = R and hence I − J is not an edge of Ω(R), a contradiction. The
converse is clear.

(2) By Part (1) is clear.

Remark 3.1. For a connected graph G, if V1, V2, . . . , Vk is a partition of
V (G) such that for every 1 ≤ i ≤ k, x, y ∈ Vi implies that N(x) = N(y).
Then dimM (G) ≥ |V (G)| − k.

Theorem 3.1. Suppose that R ∼= R1 × · · · × Rn, where Ri is an Artinian
local ring such that for every 1 ≤ i ≤ n, |A(Ri)

∗| ≥ 1. Then dimM (Ω(R)) =
|A(R)∗| − 2n + 1.

Proof. Suppose that I = (I1, . . . , In) and J = (J1, . . . , Jn) are vertices of
Ω(R). Define the relation ∼ on V (Ω(R)) as follows: I ∼ J , whenever for each
1 ≤ i ≤ n, “Ii ⊆ Nil(Ri) if and only if Ji ⊆ Nil(Ri)”.

Clearly, ∼ is an equivalence relation on V (Ω(R)). The equivalence class of
I is denoted by [I]. Suppose that X and Y are two elements of the equivalence
class of I. Since X ∼ Y , by part (1) of Lemma 3.1, we can easily get N(X) =
N(Y ). Now, since the number of equivalence classes is 2n − 1, then

dimM (Ω(R)) ≥ |A(R)∗| − (2n − 1) = |A(R)∗| − 2n + 1,

by Remark 3.1.
Now, we show that

dimM (Ω(R)) ≤ |Z(R)∗| − 2n + 1.

We put
A = {(I1, . . . , In) ∈ V (Ω(R)) | Ii ∈ {0, R1, . . . , Rn} for every 1 ≤ i ≤ n}∪
{(Nil(R1), . . . , Nil(Rn))}
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W = A(R)∗ −A.
We show that W is a resolving set and consequently the metric basis for

the graph Ω(R). For this, let I, J ∈ A and I 6= J . Let I = (I1, . . . , In) and
J = (J1, . . . , Jn). We show that D(I|W ) 6= D(J |W ).

We have the following cases:
Case 1. I = (Nil(R1), . . . , Nil(Rn)) or J = (Nil(R1), . . . , Nil(Rn)).

Without loss of generality, we may assume that I 6= (Nil(R1), . . . , Nil(Rn))
and J = (Nil(R1), . . . , Nil(Rn)). By Part (2) of Lemma 3.1, we have D(J |W ) =
(1, 1, . . . , 1).To continue the proof let I ′ = ann(I). Since I + I ′ = R, I is not
adjacent to I ′. Since |[I ′]| > 1 (note that for every X ∈ V (Ω(R)), |[X]| > 1),
W ∩ [I ′] 6= ∅. This implies that for every K ∈ W ∩ [I ′], K is not adjacent to
I and hence D(I|W ) 6= (1, 1, . . . , 1). Therefore, D(I|W ) 6= D(J |W ).

Case 2. I 6= (Nil(R1), . . . , Nil(Rn)) and J 6= (Nil(R1), . . . , Nil(Rn)).
Since I � J , for some 1 ≤ i ≤ n, Ii = 0 and Ji = Ri or Ji = 0 and

Ii = Ri. Without loss of generality, we may assume that I1 = 0 and J1 = R1.
So I = (0, I2, . . . , In) and J = (R1, J2, . . . , Jn). Let 0 6= K ⊆ Nil(R1) and
X = (K,R2, . . . , Rn). This, clearly follows that, X ∈ W , d(I,X) = 1 and
d(J,X) = 2. Therefore, D(I|W ) 6= D(J |W ).

Since |A| = 2n − 1, we have |W | = |A(R)∗| − (2n − 1) = |A(R)∗| − 2n + 1.
So

dimM (Ω(R)) ≤ |A(R)∗| − 2n + 1.

Corollary 3.1. Suppose that R ∼= R1 × · · · × Rn, where Ri is an Artinian
local ring such that for every 1 ≤ i ≤ n, |A(Ri)

∗| = 1. Then dimM (Ω(R)) =
3n − 2n − 1.

Lemma 3.2. Let R ∼= R1 × · · · × Rn × F1 × · · · × Fm, n ≥ 1, m ≥ 1
where each (Ri,mi) is an Artinian local ring with mi 6= (0) and each Fi

is a field and let S ∼= F ′1 × · · · × F ′n+m where each F ′i is a field. Then
dimM (Ω(R)[A]) = dimM (Ω(S)) = m + n, where A = {(I1, . . . , In+m) ∈
V (Ω(R)) | Ii ∈ {0, R1, . . . , Rn, F1, . . . , Fm}}∪{(Nil(R1), . . . , Nil(Rn), 0, . . . , 0)}.

Proof. It is not hard to see that Ω(R)[A] ∼= Ω(S) and hence by Theorem 2.1,
dimM (Ω(R)[A]) = dimM (Ω(S)) = m + n.

Theorem 3.2. Let R ∼= R1×· · ·×Rn×F1×· · ·×Fm, be a finite ring, n ≥ 1,
m ≥ 1 where each (Ri,mi) is an Artinian local ring with mi 6= (0) and each
Fi is a field. Then dimM (Ω(R)) = |A(R)∗| − 2n+m + m + 1.

Proof. Assume that I = (I1, . . . , In) and J = (J1, . . . , Jn) are vertices of
Ω(R). Define the relation ∼ on V (Ω(R)) as follows: I ∼ J , whenever for
every 1 ≤ i ≤ n, “Ii ⊆ Nil(Ri) if and only if Ji ⊆ Nil(Ri)”.
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Clearly, ∼ is an equivalence relation on V (Ω(R)). The equivalence class of
I is denoted by [I]. Suppose that X and Y are two elements of the equivalence
class of I. Since X ∼ Y , by part (2) of Lemma 3.1, we can easily get N(X) =
N(Y ). Now, since the number of equivalence classes is 2n+m − 1, then

dimM (Ω(R)) ≥ |A(R)∗| − (2n+m − 1) = |A(R)∗| − 2n+m + 1,

by Remark 3.1. Now, we put
A = {(I1, . . . , In+m) ∈ V (Ω(R)) | Ii ∈ {0, R1, . . . , Rn, F1, . . . , Fm}}∪
{(Nil(R1), . . . , Nil(Rn), 0, . . . , 0)}.
In fact, |A| = 2n+m−1 and for every equivalence class say [I], |[I]∩A| = 1.

This means that if W is a resolving set for Ω(R), then A(R)∗ −A ⊆W .
Also, for every n + 1 ≤ i ≤ n + m, let

Ki = (R1, R2, . . . , Rn, Jn+1, Jn+2, . . . , Jn+m)

such that Jj = 0 if i = j, and if i 6= j, Jj = Fj and let

B = {Kn+1,Kn+2, . . . ,Kn+m}
C = {(0, 0, . . . , 0, In+1, . . . , In+m) ∈ V (Ω(R)) | In+j ∈
{0, F1, . . . , Fm} for every 1 ≤ j ≤ m} ∪ {(Nil(R1), . . . , Nil(Rn), 0, . . . , 0)}.

Now, let I = (I1, . . . , In+m) ∈ A(R)∗ − A ⊆ W . Then since |[I]| > 1, for
some 1 ≤ i ≤ n, Ii ⊆ Nil(Ri). So by Lemma 3.1, every element of A(R)∗ −A
is adjacent to all elements of C ⊆ A. Thus we need to add some elements of
A to A(R)∗−A to get W . For this by proof of Theorem 2.1 for reduced rings
and Lemma 3.2, the best candidate is the set of elements of B. So B ⊆ W .
This implies that

dimM (Ω(R)) ≥ |A(R)∗| − 2n+m + m + 1.

We prove that W = {A(R)∗ −A} ∪B is a resolving set and consequently the
metric basis for the graph Ω(R). But this is clear by Theorem 2.1 and Lemma
3.2.

We close this section with the following example which is related to The-
orem 3.2.

Example 3.1.

(1) Let R = Z4 × Z2. Then n = m = 1 (in Theorem 3.2). We have
|A(R)∗| = 4. By Theorem 3.2, dimM (Ω(R)) = |A(R)∗| − 2n+m +m+ 1 = 4−
22 + 1 + 1 = 2. Also, by the following figure, we regain that dimM (Ω(R)) = 2.
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(2) Let R = Z4 × Z4 × Z2 × Z2. Then n = m = 2 (in Theorem 3.2). We

have |A(R)∗| = 34.
A = {(0,Z4,Z2,Z2), (Z4, 0,Z2,Z2), (Z4,Z4, 0,Z2), (Z4,Z4,Z2, 0), (0, 0,Z2,Z2),
(0,Z4, 0,Z2), (0,Z4,Z2, 0), (Z4, 0,Z2, 0), (Z4, 0, 0,Z2), (Z4,Z4, 0, 0), (Z4, 0, 0, 0),
(0,Z4, 0, 0), (0, 0,Z2, 0), (0, 0, 0,Z2), ((2), (2), 0, 0) }.
Since A(R)∗ = ∪I∈A[I] and for every X,Y ∈ [I], N(X) = N(Y ), we must

have A(R)∗ −A ⊆W (in fact X ∈W or Y ∈W ). Now, let
B = {(Z4,Z4,Z2, 0), (Z4,Z4, 0,Z2)},
C = {(0, 0, 0,Z2), (0, 0,Z2, 0), (0, 0,Z2,Z2), ((2), (2), 0, 0)}.
So by Lemma 3.1, every element of A(R)∗−A is adjacent to all elements of

C and since |C| = 4, we need to add at least two elements of A to A(R)∗ −A
to get W . So we can let B ⊆W . Therefore,

W = {((2),Z4,Z2,Z2), (Z4, (2),Z2,Z2), ((2), (2),Z2,Z2), ((2), (2), 0,Z2),
((2), (2),Z2, 0), ((2),Z4, 0,Z2), ((2),Z4,Z2, 0), (Z4, (2),Z2, 0), (Z4, (2), 0,Z2),
(Z4,Z4,Z2, 0), (Z4,Z4, 0,Z2), (Z4, (2), 0, 0), ((2),Z4, 0, 0), ((2), (0),Z2,Z2),
((2), 0, 0,Z2), ((2), 0,Z2, 0), (0, (2),Z2,Z2), (0, (2), 0,Z2), (0, (2),Z2, 0),
((2), 0, 0, 0), (0, (2), 0, 0)}.
We have:
D((0,Z4,Z2,Z2)|W ) = (1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((Z4, 0,Z2,Z2)|W ) = (2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1),
D((0, 0,Z2,Z2)|W ) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((0,Z4, 0,Z2)|W ) = (1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((0,Z4,Z2, 0)|W ) = (1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((Z4, 0,Z2, 0)|W ) = (2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((Z4, 0, 0,Z2)|W ) = (2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((Z4,Z4, 0, 0)|W ) = (2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1),
D((Z4, 0, 0, 0)|W ) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((0,Z4, 0, 0)|W ) = (1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((0, 0,Z2, 0)|W ) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
D((0, 0, 0,Z2)|W ) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
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D(((2), (2), 0, 0)|W ) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
It is seen that for every I, J ∈ A(R)∗−W with I 6= J , D(I|W ) 6= D(J |W )

and so W is a resolving set and consequently the metric basis for the graph
Ω(Z4 × Z4 × Z2 × Z2).
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